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Abstract. We develop a practical method of computing the stationary drift velocityV and the
diffusion coefficientD of a particle (or a few particles) in a periodic system with arbitrary transition
rates. We solve this problem in a physically relevant continuous-time approach as well as for models
with discrete-time kinetics, which are often used in computer simulations. We show that both
approaches yield the same value of the drift, but the difference between the diffusion coefficients
obtained in each of them equals1

2V
2. Generalization to spaces of arbitrary dimension and several

applications of the method are also presented.

1. Introduction

Investigation of diffusive transport is of the highest importance in many areas of physics
and related sciences. The most fundamental characteristics of diffusion is provided by two
quantities—the diffusion coefficientD and the drift velocityV . Knowledge of the latter is
especially important in studies of non-equilibrium phenomena, where usuallyV 6= 0. This
includes, among others, diffusion in disordered media subject to an external field [1–7] or the so-
called molecular ‘pumps’ and ‘motors’ [8–10], responsible for transport of various chemicals
in biological cells. However, no universaland practical theoretical method of determining
V andD for arbitrary systems has been developed, and although many solutions for some
particular physical models have been proposed, in more complicated cases one often has to
resort to approximations or numerical methods.

The first attempt, to our knowledge, towards determiningV andD in an arbitrary system
was made by Derrida [11], who considered a one-dimensional, periodic lattice of a period
L and arbitrary hopping rates between nearest-neighbour sites. He managed to give exact
expressions for the velocity and the diffusion constant as functions of the hopping rates. He
then extended his method [12] to a periodicd-dimensional system, but his solution turns out
to be rather complicated. An alternative method of calculatingV was also developed by Kehr
et al [5]. Of the two quantitiesV andD, the latter is, of course, much harder to find. A
surprisingly simple formula for one-dimensional systems with transition rates satisfying the
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detailed balance condition was derived by Lyo and Richards [13], and recently independently
reinvented by Kutner [14] and Wichmann [15],

D =
(

1

L2

L−1∑
j=0

1

P
eq
j 0

→
j

)−1

(1)

whereL is the period of the lattice,P eq
j denote the equilibrium site occupancy probabilities,

and0→j are the transition rates from sitej to j + 1. However, this equation is valid only
when the random walker hops between nearest-neighbour sites. A method of determiningD

in arbitrary periodic systems satisfying the detailed balance condition was then proposed by
Braun and Sholl [16]. Description of several other techniques, developed for some special
types of random environments, can be found in review articles [1–4,17].

All the above-mentioned methods are based on the following scheme:

(1) Reduce the infinite system to a single elementary cell with periodic boundary conditions.
(2) Write down the master equation.
(3) Using it calculate the steady-state properties of this system; in particular, find the steady-

state site occupation probabilities [11,12,14–16] or propagators [18].
(4) Given these quantities, findV andD.

The third step is critical and can be carried out explicitly only for relatively small systems
or for models possessing some special properties, e.g. one-dimensional lattices with jumps
restricted to the nearest-neighbour sites. The main goal of this paper is to develop a simple
and, at the same time, general method of calculatingV andD explicitly without performing
detailed analysis of the steady state. In our approach the third step reads as follows:

(3′) Find the matrix3(k) representing the Fourier transform of the master equation;

which is a rather straightforward operation. The technique we propose is valid for both
equilibrium and non-equilibrium systems. It can also be quite easily implemented in computer-
algebra or numerical programming languages.

Following the first step, our considerations will be restricted to periodic systems, such as
crystals or molecular motors. A general problem of diffusion in an arbitrary disordered system
remains an open question. One might be tempted to treat it by taking the limitL → ∞.
This method can sometimes provide a hint about the anomalous type of diffusion in a given
aperiodic system [17]. However, except for some simple models [2, 19], it has not been
established whether the limitst →∞ andL→∞ commute and, thus, whether this approach
is generally correct.

We will pay special attention to a one-dimensional system of finite periodLwith arbitrary
jump rates between any of its sites whose distance is less thanL. This is perhaps the simplest
model of a periodic system where all elements of the transition rate matrix can take on nonzero
values. Its investigation can be therefore carried out with relatively simple mathematical
formalism. A solution to a general, multi-particle and multi-dimensional problem requires
the same mathematical methods, but the notation would have to be complex. What is even
more important, any periodic system with a finite number of sites in its elementary cell can be
mapped on such a one-dimensional system; the geometry of the original problem is relevant
mainly in constructing the matrix3(k) and can be taken into account quite easily. Once the
explicit form of3(k) has been found, one can computeV andD using the methods we derive
here for this simple one-dimensional system.

In our calculations we will use both continuous-time and discrete-time formalisms. One
could expect that since we calculateV andD in a stationary state, where all quantities are
independent of time, both approaches should yield the same result. However, as was found
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by Derrida [11], the form of the diffusion coefficient as a function of the transition rates can
depend on whether time flows continuously, or not. This is an important issue, since using
discrete-time models belongs to the favourite techniques of computer physics (in particular,
cellular-automata [20] and exact-enumeration [3] methods), and one needs to know whether
results obtained in this way are correct. Derrida [11] showed that in his (grossly simplified)
model the relation between the diffusion constants obtained in the continuous-time (D) and
discrete-time (DD) formalisms readsD − DD = 1

2V
2. We will show that this relation is

general and will prove it for any periodic system with arbitrary transition rates.
The paper is organized as follows. Using the Fourier transform of the master equation,

see [1, 17, 21], in section 2 we analyse a one-dimensional system with arbitrary periodL

and transition rates0jl . We find a simple technique of calculatingV andD in terms of the
three lowest coefficients of the characteristic polynomial of the Fourier-transformed transfer
matrix, 3(k). The most important properties of its spectrum atk = 0 have been already
described in [21,22], but only for systems obeying the detailed balance condition. Therefore,
in sections 2.1 and 2.2 we analyse in detail the spectrum of3(k) in a general case, assuming that
the time is a continuous or a discrete quantity, respectively. Then, in section 2.3, we compare
the two approaches and explain the different forms of diffusion coefficients derived in each of
them. In section 3 we generalize our approach to systems in arbitrary space dimension, and in
section 4 we present a particularly simple method of calculatingV andD for one-dimensional
systems with transitions between the nearest-neighbour sites. In section 5 we derive explicit
forms ofV andD in some commonly used models. In particular, one of the examples studied
there explains how to apply our technique to many-body problems. Finally, section 6 is devoted
to conclusions.

2. General case of a periodic one-dimensional system

2.1. Continuous-time formalism

Consider a one-dimensional lattice with its sites located atxn, n ∈ N . At time t = 0 we put
a particle at sitex0 = 0. The particle can then jump between the lattice sites. Transitions are
assumed to represent a continuous (e.g. Poisson) Markov process in time. The (constant in
time) transition rate from a sitexn to a sitexm will be denoted by0mn. We assume that the
system is periodic in space and denote its period byL > 1,

∀n,m0mn = 0m+L,n+L xm − xn = xm+L − xn+L. (2)

Of course transition rates between two different sites cannot be negative;0mn > 0 if m 6= n.
For simplicity we also restrict our considerations to the case where direct transitions between
sitesm andn are allowed only if|m− n| < L.

Let P(n, t) denote the probability density of finding the particle at sitexn at timet . The
evolution of this quantity is governed by the master equation

∂P (n, t)

∂t
=
∑
m

[0nmP (m, t)− 0mnP (n, t)] (3)

and the initial condition reads

P(n, 0) = δn,0. (4)

We can now treat the whole lattice as if it consisted ofL sublattices and define the probability
densitiesPl(j, t) of finding a particle at a given sublatticel at siten at timet as

Pl(n, t) ≡ P(n, t)δLn,l (5)
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whereδLn,l is a generalized Kronecker delta,δLn,l = 1 if n = l (modL) and δLn,l = 0
otherwise. We can now rewrite (3) as a system ofL linear differential equations forPl(n, t),
l = 0, . . . , L− 1,

∂Pl(n, t)

∂t
=

L−1∑
j=1−L

[0l,l+jPl+j (n + j, t)− 0l+j,lPl(n, t)]. (6)

The major advantage of (6) as compared with (3) is that its coefficients do not depend onn.
Therefore, we can calculate its Fourier transform as

∂P̃l(k, t)

∂t
=

L−1∑
j=1−L

[0l,l+je
ik(xl+j−xl)P̃l+j (k, t)− 0l+j,l P̃l(k, t)] (7)

whereP̃l(k, t) ≡
∑

n exp(−ikxn)Pl(n, t).
The system of equations (7) can be written in a compact form using anL × L matrix

3lj (k),

∂P̃l(k, t)

∂t
=

L−1∑
j=0

3lj (k)P̃j (k, t) (8)

where

3lj (k) ≡


0lje

ik(xj−xl) + 0l,j+Leik(xj+L−xl) j < l

0lje
ik(xj−xl) + 0l,j−Leik(xj−L−xl) j > l

−
∑
m6=l

0ml j = l.
(9)

We will impose only one restriction on the form of transition rates0lj . We will demand
that3(0) be irreducible (by a permutation of indices) [23,24]; i.e., in the stationary state the
particle can be found at any of the sublattices defined in (5) with a probability>0. Physically,
this condition means that in the long-time limit the system does not split up into several
non-interacting subsystems. Mathematically, irreducibility means that3(0) has exactly one
eigenvector whose all components are strictly positive. Our approach is thus quite general—
we do not require that the transition rates should satisfy the detailed balance condition, the
Fourier-transformed transition rate matrix,3(k), need not be symmetric or even diagonalizable
atk = 0, and some of its eigenvalues can be complex.

A general solution to (8) reads [25]

P̃l(k, t) =
L−1∑
j=0

Tlj (k, t)exp[λj (k)t ] l = 0, . . . , L− 1 (10)

where the coefficientsTlj (k, t) are polynomials int and can be determined using the initial
condition. The degree ofTlj (k, t) is smaller than the multiplicity ofλj (k). We assume that
the eigenvaluesλj (k) are ordered in accordance with the descending magnitude of their real
parts atk = 0; i.e.,j < l ⇒ Re(λj (0)) > Re(λl(0)). SinceP(n, t) =∑L−1

l=0 Pl(n, t), there
is P̃ (k, t) =∑L−1

l=0 P̃l(k, t), and so (10) yields

P̃ (k, t) =
L−1∑
l=0

hl(k, t)exp[λl(k)t ] (11)

wherehl(k, t) ≡
∑L−1

j=0 Tjl(k, t) are polynomials int (actuallyhl(k, t) can depend on time
only if λl(k) is degenerated).
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In a one-dimensional system the stationary drift velocityV and the diffusion coefficient
D are given by

V = lim
t→∞
〈x〉
t

= lim
t→∞ i

∂P̃ (k,t)

∂k
|k=0

t
(12)

D = lim
t→∞
〈x2〉 − 〈x〉2

2t

= lim
t→∞
− ∂2P̃ (k,t)

∂k2 |k=0 + ( ∂P̃ (k,t)
∂k
|k=0)

2

2t
(13)

where〈f (x)〉 ≡ ∫ f (x)P (x, t)dx. Thus, if we could calculate the eigenvalues of3(k), we
would be able, in principle, to calculateV andD. The diagonalization of3(k), however, is a
formidable task feasible only in some special cases (e.g. for smallL or when special relations
have been imposed on its elements). Fortunately, as we will see below, if our aim is restricted
only to determiningV andD as functions of the transition rates0lj , we need not calculate
explicitly even a single eigenvalue of the transition rate matrix!

Let µ be a constant such that∀jµ > |3jj (0)| and letQ denote an auxiliary matrix,
Qj l ≡ 3jl(0)+µδjl . Since3(0) is irreducible, so isQ. Moreover, because all elements ofQ
are non-negative, we can apply to it the Frobenius theorem [23, 24] and conclude thatQ has
a positive eigenvalueq, which is a simple root of the characteristic equation, and the moduli
of all other eigenvalues are at mostq. Because the dominant eigenvalue of an irreducible,
non-negative matrix lies between the largest and smallest column sums [23, 24], and in our
case these sums are all equal toµ, we find that the dominant eigenvalueq = µ. Since the
spectrum ofQ is shifted, with respect to the spectrum of3(0), by µ, we conclude that for
k = 0 the matrix3(k) has exactly one dominating eigenvalueλ0(0) = 0 and the real parts of
all other eigenvalues are negative,

λ0(0) = 0> Re(λ1(0)) > · · · > Re(λL−1(0)). (14)

Thus, in the limitt →∞ this single eigenvalue dominates the sum in the rhs of (10) atk ≈ 0.
In determining the forms ofV andD we can therefore employ a simple approximation

P̃ (k, t) = h0(k, t)exp[λ0(k)t ]. (15)

Moreover, since
∑

n P (n, t) = 1, there is

∀t>0P̃ (0, t) = 1 (16)

which, owing to (14), implies

h0(0, t) = 1. (17)

Upon inserting (15) into (12), (13) and using (14), (17) we conclude that

V = i
∂λ0

∂k

∣∣∣∣
k=0

(18)

D = −1

2

∂2λ0

∂k2

∣∣∣∣
k=0

. (19)

LetW(x) denote the characteristic polynomial of the matrix3(k). Let ci(k) denote its
coefficients atxj , j = 0, . . . , L. We thus have

∀kW(λ0(k)) =
L∑
j=0

cj (k)[λ0(k)]
j = 0. (20)
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On differentiating it with respect tok and using the first part of (14) we arrive at

∂λ0

∂k

∣∣∣∣
k=0

= −c
′
0

c1
(21)

where we used a shorthand notationcj ≡ cj (0) andc′j ≡ ∂cj /∂k|k=0. Note thatc1 6= 0, which
follows from (14). Differentiating (20) twice yields

∂2λ0

∂k2

∣∣∣∣
k=0

= −c
′′
0 + 2c2(λ

′
0)

2 + 2c′1λ
′
0

c1
(22)

whereλ′0 ≡ ∂λ0(k)/∂k|k=0 andc′′0 ≡ ∂2c0/∂k
2|k=0. We thus finally arrive at our major result

V = −i
c′0
c1

(23)

D = c′′0 − 2c2V
2 − 2ic′1V

2c1
. (24)

Functionscj (k) can depend onk and the transition rates in a very complicated way. We
were able to find only two general properties, both following immediately from (14):c0 = 0
andc1 6= 0. Explicit forms ofc′0, c′′0, c1, c′1 andc2 for some particular models will be given
below, in sections 4 and 5.

2.2. Discrete-time formalism

The discrete-time formulation of the problem is basically similar to the continuous one, but
there are some major differences, too. For simplicity we will use the same notation as in the
previous section, but one should remember that almost all functions employed in the discrete-
time formulation of the problem differ from those we dealt with in section 2.1. Where it will be
necessary to compare quantities computed within each approach, we will attach a superscript
‘D’ to the quantity derived in the discrete-time formalism.

In the discrete-time version of the problem the master equation (expressed in terms of the
probabilitiesPl(n, t) of finding a particle at timet at a sitexn belonging to a sublatticel) reads

Pl(n, t + 1) = Pl(n, t) +
L−1∑
j=1−L

[0l,l+jPl+j (n + j, t)− 0l+j,lPl(n, t)] (25)

wherel = 0, . . . , L−1, and0lj are dimensionless probabilities satisfying the usual condition
∀lj 06 0jl 6 1. Note that in the continuous formulation of the problem0jl were unbounded
from above, dimensional quantities (of dimension [T−1]) and we called them ‘transition rates’.
Last, but not least, in the present approach timet assumes only integer values.

Upon taking the Fourier transform of (25) we arrive at

P̃l(k, t + 1) = P̃l(k, t) +
L−1∑
j=1−L

[0l,l+je
ik(xl+j−xl)P̃l+j (k, t)− 0l+j,l P̃l(k, t)] (26)

which can be rewritten using a stochastic matrix3D
lj (k)

P̃l(k, t + 1) =
L−1∑
j=0

3D
lj (k)P̃j (k, t) (27)

where the only difference between3D and its continuous-time counterpart3 lies in their
diagonal elements

3D
lj (k) = 3lj (k) + δlj . (28)
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Therefore, the eigenvaluesλD
l of 3D are related to the eigenvaluesλl of 3 through a simple

formula

λD
l (k) = λl(k) + 1 l = 0, . . . , L− 1. (29)

Applying the theorem of Frobenius [23,24] to3D(0), which is a real, non-negative matrix,
we conclude that

λD
0 (0) = 1 (30)

and the moduli of all other eigenvalues do not exceed one. However, in contrast to the
continuous-time formalism, now there can bes > 1 eigenvalues, sayλD

jm
(k),m = 0, . . . , s−1,

such that|λD
jm
(0)| = 1; for convenience we assume thatλD

j0
≡ λD

0 . Although this can happen
only if all diagonal elements of3D(0) vanish [23,24], we do not exclude this exceptional case
from our considerations [11]. The Frobenius theorem ensures us that all these dominating
eigenvalues are distinct, and so in the normal Jordan representation of3D(k) the size of the
corresponding Jordan blocks is one. This suffices to assert that fork ≈ 0 andt →∞

P̃ (k, t) =
s−1∑
m=0

hm(k)[λ
D
m(k)]

t (31)

wherehm are some functions ofk.
Because equation (16) is valid both in continuous-time and discrete-time formalisms, upon

comparing it with (31) we conclude that except forh0(k) all other coefficientshm(k) in (31)
must vanish atk = 0,

h0(0) = 1 hm(0) = 0 m = 1, . . . , s − 1. (32)

Actually, sincet is an integer, this is not a trivial statement; a proof is based on the fact that all
dominant eigenvaluesλD

m are distinct roots of the equationxs = 1, see [23,24]. Upon inserting
(31) into (12) and (13) and then using (30) and (32) we arrive at

V D = i
∂λD

0 (k)

∂k

∣∣∣∣
k=0

(33)

DD = −1

2

[
∂2λD

0 (k)

∂k2
−
(
∂λD

0 (k)

∂k

)2
] ∣∣∣∣

k=0

−9(0, t) (34)

where

9(k, t) ≡
s−1∑
m=1

∂hm

∂k

(
∂λD

m

∂k
− ∂λ

D
0

∂k
λD
m

)
(λD
m)
t−1. (35)

Note that, by definition,9(k, t) ≡ 0 if s = 1, i.e., ifλD
0 (0) is the only dominating eigenvalue

of the transition matrix3(0). Moreover, because the existence of the diffusion constant is
guaranteed by the central limit theorem,9(0, t) must be independent of time, at least in the
limit t →∞, for anys. This, in turn, requires that even ifs > 1

9(0, t) = 0 (36)

(see the comment under equation (32)). Therefore, to determineV andD one needs only
to investigate the properties of a single eigenvalueλD

0 (0) at k ≈ 0, i.e. equation (31) can be
replaced with

P̃ (k, t) = h0(k)[λ
D
0 (k)]

t . (37)
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Finally, using (18), (19), (29), and (33)–(36) we conclude that the drift velocities and
diffusion coefficients obtained in continuous and discrete formulations of the problem are
related to each other by simple, general formulae

V D = V (38)

DD = D − 1
2V

2. (39)

Equation (39) holds, however, only if the intervalτ between successive jumps in the discrete
formulation of the problem equals one, which has been assumed in our calculations for
simplicity. For a general value ofτ the relation betweenD andDD reads

DD = D − 1
2τV

2 (40)

which has a correct dimensional form (all its terms have a dimension [L2 T−1]).

2.3. Comparison of the two formalisms

Comparing equations (15) and (37) we find that the main mathematical differences between the
continuous- and discrete-time formalisms are related to different functional forms ofP̃ (k, t)

at k ≈ 0. While in the continuous-time approach this function is given by an exponential, in
the discrete-time model we deal with a power function. In particular, notice that∂2λt (k)/∂k2

yields a term proportional tot (t − 1) = t2 − t . This gives rise to an additional term linear in
t , which is responsible for the difference between (34) and (19), and hence for the term1

2τV
2

in (40).
The presence of the time unitτ in (40) suggests that the key to understanding the

physical reasons for the difference betweenD andDD lies in the dimensional analysis. In the
continuous-time approach the transition rates0jl aredimensionalquantities that scale with
time as [T−1]. Therefore, multiplying them all by some positive constantα 6= 1 corresponds
to changing the time unit, and so the resulting diffusion coefficientDnew will be equal to the
product ofα and the original value of the diffusion coefficient,Dold. Similarly,Vnew= αVold.
This explains why in the continuous-time approach we could safely assumeτ = 1. However,
in the discrete formalism there is no such a simple relation between the time intervalτ and
the jump probabilities0jl , which aredimensionless. Suppose, for example, that at times
t = 0, τ,2τ, . . .we toss a coin. Changing the frequency of tossing, or 1/τ , will have no impact
on the probability of the coin falling heads up. The proper way of taking the continuous-time
limit in the discrete-time model is to assume that the jump probabilities0D

j l are related to the
continuous-time transition rates0jl by a simple formula0D

j l = τ0jl and taking the limitτ → 0.
In other words, to get the continuous-time limit, we need to apply the ‘alpha-transformation’ to
the transition probabilities with an infinitesimally small value ofα. Equation (40) shows that
DD is actually a sum of two terms—one that scales linearly under the ‘α-transformation’ (D),
and the other one which scales quadratically (− 1

2τV
2). In the limit τ → 0 the continuous-

time diffusion coefficientD is thus of order O(τ ), while− 1
2τV

2 is of order O(τ 2) and can
be neglected. Consequently, as could be expected, the relative difference between diffusion
coefficients calculated within each approach vanishes,(D −DD)/D→ 0 asτ → 0.

A decrease of the diffusion coefficient in the discrete-time formalism can be also
interpreted as a consequence of the fact that a discrete process tends to be ‘less random’
than a continuous one. This is clearly seen in a limiting case of a one-dimensional lattice
(with lattice constanta and time unitτ ) where all probabilities of jumping to the left vanish
(0←j = 0) and all probabilities of jumping to the right are equal to one (0→j = 1). A discrete
process with this choice of probabilities is completely deterministic. At each time interval the
diffusing particle with probability one hops to the right, hence the diffusion constant vanishes.
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On the other hand, if we consider a continuous-time process with0← = 0 and0→ = 1, we
can see that the motion of the particle is now by no means deterministic. Although we know
that on average there will be one jump to the right per unit time, we do not know when it will
actually occur. This uncertainty introduces randomness to the process, and the corresponding
diffusion coefficient equalsa2/2τ .

Note finally that because the left-hand side of (40) represents a diffusion coefficient, it
cannot be negative, and so

D > 1
2τV

2. (41)

This has several interesting consequences. First, if in a periodic system there is a stationary drift
(V 6= 0), then the continuous-time diffusion coefficientD is bounded from below. That such a
bound exists can indirectly imply bounds on other physical quantities, e.g., the maximal force
exerted by a molecular motor [26]. Second,supposethat (40), and hence (41), is also valid
in infinite (aperiodic) random systems. Whenever the diffusion is sublinear, i.e., whenever
lim t→∞(〈x2〉 − 〈x〉2)/t = 0, there isD = 0. Equation (40) would then imply thatV = 0, or
lim t→∞〈x〉/t = 0. This would mean that whenever diffusion is sublinear (‘subdiffusion’), the
drift is also sublinear (‘subdrift’) or vanishes altogether. The asymmetric hopping model with
bond disorder can serve as an example of an infinite system where such relation is actually
observed [2].

3. Diffusion in arbitrary space dimensiond

Suppose we want to calculate the drift velocityEV and the diffusion tensorD in a system with
d Euclidean coordinates. If the system can be divided into afinitenumber of subsystems with
constant transition rates between each two of them, our major results (14)–(17) and (37) remain
valid irrespective of the geometry of the system. Such division is always possible for periodic
systems with a finite number of sites in the elementary cell. The matrix3(Ek) is the most
‘sensitive’ to the geometry of the system under consideration. In calculating its explicit form
one can use an equation similar to (9), remembering, however, thatEk andExn are now vectors
in a d-dimensional space. One should also take into account all possible transitions between
sublattices, and this can be done by considering all possible jumps starting at any site belonging
to some elementary cell and ending in the same cell or in one of its nearest-neighbour cells.

The components of the velocity vectorEV and the diffusion tensorD are given by

Vµ = lim
t→∞
〈xµ〉
t
= lim

t→∞ i
1

t

∂P̃ (Ek, t)
∂kµ

∣∣∣∣Ek=0

(42)

Dµσ = lim
t→∞
〈xµxσ 〉 − 〈xµ〉〈xσ 〉

2t
= lim

t→∞
1

2t

(
−∂

2P̃ (Ek, t)
∂kµ∂kσ

+
∂P̃ (Ek, t)
∂kµ

∂P̃ (Ek, t)
∂kσ

) ∣∣∣∣Ek=0

. (43)

Using (14)–(17) and (37) we conclude that

Vµ = V D
µ = i

∂λ0

∂kµ

∣∣∣∣Ek=0

(44)

Dµσ = −1

2

∂2λ0

∂kµ∂kσ

∣∣∣∣Ek=0

(45)

DD
µσ = −

1

2

[
∂2λD

0

∂kµ∂kσ
− ∂λ

D
0

∂kµ

∂λD
0

∂kσ

] ∣∣∣∣Ek=0

(46)

whereµ, σ = 1, . . . , d. Actually, since logP̃ (Ek, t) ≈ λ0(Ek)t is a generating function for
cumulants ofP(Ex, t) [22], the first two of the above formulae are a natural consequence of
(15) and (17).
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Just as in the one-dimensional case, any component ofEV orD can be expressed in terms
of derivatives of the three lowest coefficients of the characteristic polynomial of the matrix
3(k) atk = 0. In particular,

Vµ = V D
µ = −i

c
(µ)

0

c1

∣∣∣∣Ek=0

(47)

Dµσ = c
(µ)(σ )

0 − 2c2VµVσ − i(c(µ)1 Vσ + c(σ)1 Vµ)

2c1

∣∣∣∣Ek=0

(48)

DD
µσ = Dµσ − 1

2VµVσ (49)

where we used a shorthand notationf (µ) ≡ ∂f/∂kµ.

4. The nearest-neighbour transition rates

If in a one-dimensional system only transitions to the nearest-neighbours are allowed, and if
the distance between nearest-neighbour sites is equal to one, our formulae (23) and (24) can
be simplified by noting that in this particular case

c′0 = iL

( L−1∏
j=0

0→j −
L−1∏
j=0

0←j

)
(50)

c′′0 = L2

( L−1∏
j=0

0→j +
L−1∏
j=0

0←j

)
(51)

c′1 = 0 (52)

where0→j and0←j are the transition rates to the right and left from sitej , respectively;
0→j ≡ 0j+1,j and0←j ≡ 0j−1,j . Thus, to determineV andD we only need to compute the
two terms of the characteristic polynomial of3(0): c1 andc2.

Althoughc1 andc2 could be, at least in principle, found by calculating det(xI −3(0)),
I being the identity matrix, this could lead to serious computational overhead even forL of
order ten. A more efficient method exploits the fact thatcl are polynomials in0←j and0→j ,
j = 0, . . . , L− 1, and can be expressed as

cl =
∑
{γj },{δj }

L−1∏
m,n=0

(0→m )
γm(0←n )

δnψl({γj }, {δj }) (53)

wherel ∈ {1, 2}, γm ∈ {0, 1}, δn ∈ {0, 1}, andψl({γj }, {δj }) = 0 if at least one of the following
conditions is satisfied:

L−1∑
m=0

(γm + δm) 6= L− l
∃mγm = δm = 1

∃mγm = δm+1 = 1.

(54)

Otherwiseψ({γj }, {δj }) = 1. For example, forL = 3 there is

c1 = 0←2 0←0 + 0←2 0
→
0 + 0→2 0

→
0 + 0←1 0

←
2 + 0←1 0

→
2 + 0→1 0

→
2

+0←0 0
←
1 + 0←0 0

→
1 + 0→0 0

→
1

c2 = 0←0 + 0←1 + 0←2 + 0→0 + 0→1 + 0→2 .
(55)

Although formally the sum in (53) consists of 22L terms, in practice only for a few of them
do ψl({γj }, {δj }) 6= 0. In particular, for a given value ofL the sum in (53) consists ofL2
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non-vanishing terms forc1 and (L4 − L2)/12 terms forc2. Thus it should be possible to
calculateD algebraically forL of order of 20, and numerically forL of order at least 100. It
is worth noting that sincecl can be computed as sums of positive values, by using (53) rather
than calculating the determinant ofxI −3(0)we can avoid large numerical errors which often
appear when computing determinants of large matrices.

It is not difficult to show that our general formulae (23) and (24) are consistent with
equation (1) derived for a general case of one-dimensional systems at equilibrium with nearest-
neighbour transitions. To this end it suffices to notice that the equilibrium site occupation
probabilitiesP eq

j can be expressed in terms of the jump probabilities as

1

P
eq
j 0

→
j

= 1

0→j
+

0←j
0→j 0

→
j−1

+ · · · + 0
←
j 0

←
j−1 . . . 0

←
j−L+2

0→j 0
→
j−1 . . . 0

→
j−L+1

. (56)

On inserting it into (1) and then taking into account (53) and the trivial conditionV = 0 one
arrives at (24).

Another interesting consequence of (50)–(52) is that diffusion in systems with transitions
to nearest neighbours is always normal. To see it note that sincec1 6= 0,D is always finite and
thus no superdiffusion is possible. The other type of anomaly, subdiffusion, would require that
D = 0. Owing to (41) this would implyV = 0 which, upon taking into account (24), would
requirec′′0 = 0. However, the explicit form ofc′′0, see (51), guarantees thatc′′0 > 0 except
for a degenerated case where the diffusing particle is confined to a finite region of the lattice
(0←j = 0→l = 0 for somej andl).

One final remark. Some authors [5,10,14], when considering a one-dimensional system
with nearest-neighbour transitions, prefer to reduce the problem to diffusion on a finite ring
and investigate the probability currentJ rather than the drift velocityV . The former is defined
asJ = Pj0→j − Pj+10

←
j+1 and in the steady state does not depend on the sitej it is measured

at. For single-particle systemsJ andV are related to each other through a simple formula
J = V/L [11]. In this case our approach can thus be applied for calculating bothV andJ .

5. Applications

5.1. The caseL = 1 andL = 2

Applying our approach to a particle diffusing in a one-dimensional system with a lattice
constanta = 1, time unitτ = 1, and the periodL = 1 we immediately arrive at a well known
result:

V = 0→ − 0← (57)

D = (0→ + 0←)/2 (58)

DD = [0→ + 0← − (0→ − 0←)2]/2. (59)

ForL = 2 we find

V = 2
0→1 0

→
2 − 0←1 0←2
S

(60)

D = 2
0→1 0

→
2 + 0←1 0

←
2

S
− V

2

S
(61)

DD = 2
0→1 0

→
2 + 0←1 0

←
2

S
− 2 +S

S

V 2

2
(62)

whereS ≡ 0→1 +0→2 +0←1 +0←2 . Note also that the solution forL = 3 can be easily derived
using (55).



7648 Z Koza

5.2. The sawtooth potential of arbitrary period in an external field

Consider a one-dimensional system of periodL with site energiesEnL+j = jε, wheren is an
integer,j = 0, . . . , L − 1, andε > 0 is a constant. Such a pattern is known as a discrete
sawtooth potential [5,9]. We assume that the transition rate from a sitej to j + 1 is given by

0→j = b exp(−βε/2) (63)

and the rate of jumping fromj to j − 1 reads

0←j =
{
b−1 exp(βε/2) j 6= 0 (modL)
b−1 exp(βε(1/2− L)) j = 0 (modL)

(64)

whereβ ≡ 1/kBT is the Boltzmann factor andb ≡ exp(βF/2) represents a bias due to an
external forceF . Note that with this choice of the transition rates, forb = 1 the system satisfies
the detailed balance condition0←j+1 exp(−βEj+1) = 0→j exp(−βEj ).

Using (53) and some combinatorics one can prove that forL > 2

c′0 = iLRL(bL − b−L) (65a)

c′′0 = L2RL(bL + b−L) (65b)

c1 = G−L−1SL(G) +R2LGL−1SL−1(G
−1) (65c)

c′1 = 0 (65d)

c2 = G2−LZL−2(G) +R2LGL−4ZL−3(G
−1) (65e)

whereR ≡ exp(−βε/2) controls the anisotropy of the potential,G ≡ Rb, Sm(x) ≡∑m
j=1 jx

2j = [x2m+2(1 +m−mx2)− x2]/(x2 − 1)2, andZm(x) ≡ 1
2

∑m
j=0(m + 1− j)(j +

1)(j + 2)x2j . Actually, we were able to prove only (65a)–(65d), and (65e) is a conjecture
based on the form ofc2 derived forL = 2, . . . ,20.

The stationary drift velocityV and the diffusion constantsD andDD can be now calculated
using (23), (24), and (40). The resulting velocity has already been studied in [5]. The diffusion
coefficientD calculated for various values ofR andL as a function of the biasb is depicted
in figure 1. ForR = 1 there isε = 0, and so for anyj we have0→j = b and0←j = b−1.

Consequently, the effective period equals one. Using (58) we conclude thatD = 1
2(b + b−1).

For R < 1 the behaviour ofD becomes more complicated. For a large bias to the right,
b � 1, the jumps to the left are so rare that practically they become irrelevant. We thus have
0→j = bR, 0←j ≈ 0, and soD ≈ bR/2 irrespective ofL. For a strong bias to the left,b � 1,
the jumps to the right can be neglected, but the particle has to jump over a large potential
barrier located at sitesj = . . . ,−L, 0, L, . . . whose height is proportional toL− 1

2, see (64).
Therefore, in this regimeD is a quickly decreasing function ofL. These two limiting solutions
match in the intermediate regime, which can be roughly described as 16 b 6 1/R.

5.3. Two particles in a sawtooth potential on a ring of lengthL = 4

Considertwoparticles diffusing in a sawtooth potential on a ring of lengthL = 4. We assume
that any sitej can be occupied by only one of them (the hard-core interaction). For simplicity
we also assume that the distance between the particles cannot exceedL − 1, so that we can
reduce the system to a ring consisting ofL sites.

Each state of the system can be described as a pair of integers,(n,m), wheren,m =
0, . . . , L − 1 denote the currently occupied sites. Asn 6= m, there areL(L − 1)/2 = 6
different states. Our two-particle system is thus equivalent to a six-state system with one
‘virtual’ random walker. These states are, in order,(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3).
The distance between a state(i1, j1) and(i2, j2) equalsi2 − i1 + j2 − j1. For example, the
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Figure 1. Diffusion coefficientD of a single particle in a sawtooth potential (63) and (64) for
various potential periodsL and anisotropy parametersR as a function of the biasb. Arbitrary
units.

distance from(0, 1) to (0, 2) is one. The transition rate between(i1, j1) and(i2, j2) vanishes
unless|i2− i1|+ |j2− j1| = 1, and in this case a transition from(i1, j1) to (i2, j2) corresponds
to a single jump of one of two diffusing particles. For example, the transition rate from(0, 1)
to (0, 2) is 0→1 , and from(0, 1) to (0, 3) is zero. Consequently, if the lattice constanta = 1,
the matrix3(k) takes on the following form:

3(k) =


−0→1 − 0←0 0←2 eik 0 0 0→3 e−ik 0

0→1 e−ik −0←2 − 0→2 − 0→0 − 0←0 0←3 eik 0←1 eik 0 0→3 e−ik

0 0→2 e−ik −0←3 − 0→0 0 0←1 eik 0

0 0→0 e−ik 0 −0←1 − 0→2 0←3 eik 0

0←0 eik 0 0→0 e−ik 0→2 e−ik −0→3 − 0←1 − 0←3 − 0→1 0←2 eik

0 0←0 eik 0 0 0→1 e−ik −0→3 − 0←2

. (66)

The drift velocityV and the diffusion coefficientD can be found for arbitrary transition
rates, but the results areverylengthy. However, in a particular case of the sawtooth potential the
transition rates0→j and0←j are given by relatively simple formulae (63) and (64), respectively.
Then,

c′0 = 8iG−6(G8− R8)(R8 + 2G2 + 1)(G2 + 1)
c′′0 = 32G−6(G8 +R8)(R8 + 2G2 + 1)(G2 + 1)
c1 = G−5(G2 + 1)[12G8 + 15G6 + 10G4 + 5G2 + 2 +R8(9G6 + 13G4 + 17G2 + 5)

+R16(G4 + 2G2 + 5)]
c′1 = 8iG−5(G8− R8)(R8 + 4G2 + 3)
c2 = G−4[37G8 + 69G6 + 58G4 + 31G2 + 9 +R8(23G6 + 49G4 + 53G2 + 19)

+R16(3G4 + 8G2 + 9)]

(67)

whereG andR were defined below equation (65).
Just like in the previous example,V ,D, andDD can be now determined using (23), (24),

and (40). The properties of the velocityV will be studied in detail elsewhere (see [27]). Here,
in figure 2 we present the ratio of the diffusion coefficient calculated for a two-particle system
(D2) to that calculated for a single-particle system (D1), forL = 4, as a function of the biasb.
This ratio measures the change of diffusivity due to interactions with the second particle. As
could be expected,D2 < D1, i.e. the presence of the second particle decreases the diffusivity of
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Figure 2. The ratio of the diffusion coefficientsD2 andD1 calculated for a four-site ring containing
two and one particles, respectively, as a function of the biasb, for various values of the anisotropy
parameterR. Arbitrary units.

the first one. This effect is not strong, however, for we find thatD2 > 1
2D1. As in the previous

example, for large biasb, the ratioD2/D1 becomes independent of the potential anisotropyR.

6. Conclusions

We have developed an effective technique of calculating the drift velocityEV and the diffusion
tensorD in arbitrary periodic systems. A novel feature of our approach, as compared with
previously proposed methods [11–16], consists in the fact that we need not examine in detail
the steady-state properties of the system. In particular, we do not need to solve linear equations
of relatively high order to find the stationary probability distribution of the random walker over
different sublattices. Instead, we calculateEV andD directly. The only quantity we really need
in order to carry out our calculations is the matrix3(k). Its explicit form, however, can be
found almost trivially; all one needs to know are the transition rates and distances from any site
of an elementary cell to any other site in the same or adjacent cell. Once the form of3(k) has
been determined, one should calculate the three lowest terms of its characteristic polynomial.
Then EV andD can be determined using our formulae (47) and (48), respectively.

Our approach is very general and can be applied practically to any periodic system
in an arbitrary space dimension. It is particularly well suited for calculations employing
computer-algebra systems, e.g., Maple or Reduce, or for numerical analysis. In this context
one should also note that the coefficientscl of the characteristic polynomial of3(0) can be
alwaysexpressed as polynomials in3jl(0), j 6= l, with positivecoefficients, and thus can be
calculated numerically with extremely high accuracy. While this is not necessarily true in the
case of their derivatives, we believe that our approach enables one to calculateEV andD even
for systems where the corresponding steady-state problem is numerically ill-conditioned.

We were able to prove a general relation between the diffusion constants calculated using
continuous-time and discrete-time approaches. Our analysis shows that inanyperiodic system
(including, for example, lattice gases studied in [6, 7]) they differ by a term1

2V
2, whereV

denotes the steady-state drift velocity along a given direction. Since the limitst → ∞ and
L→∞ were shown to commute, at least in some simple models [2, 19], we expect that this
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relation holds also for infinite random systems. It would be interesting to know whether such
a simple and apparently universal relation can be applied in contexts other than those studied
here.

We also showed how our technique can be applied to a simple many-body problem.
While, owing to mathematical complexity, we do not expect that in this way one will be able
to calculate explicitly transport coefficients in non-equilibrium systems containing more than
a few particles, our conclusion about the universal difference between diffusion coefficients
calculated in continuous- and discrete-time models should still hold. This conjecture is based
on the fact that diffusion of several particles can be interpreted as diffusion of a single particle
in the corresponding multidimensional phase space, and for the latter problem the relation
betweenD andDD has been established rigorously in section 3. Thus, for the future work,
two problems are of primary importance: the role of periodic boundary conditions in the limit
of asymptotically infinite period,L → ∞, and detailed analysis of possible applications of
our method to many-body systems.
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