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Abstract. We develop a practical method of computing the stationary drift veld¢ignd the
diffusion coefficientD of a particle (or a few particles) in a periodic system with arbitrary transition
rates. We solve this problem in a physically relevant continuous-time approach as well as for models
with discrete-time kinetics, which are often used in computer simulations. We show that both
approaches yield the same value of the drift, but the difference between the diffusion coefficients
obtained in each of them equa}sﬂ. Generalization to spaces of arbitrary dimension and several
applications of the method are also presented.

1. Introduction

Investigation of diffusive transport is of the highest importance in many areas of physics
and related sciences. The most fundamental characteristics of diffusion is provided by two
quantities—the diffusion coefficier®® and the drift velocityV. Knowledge of the latter is
especially important in studies of non-equilibrium phenomena, where usidajy0. This
includes, among others, diffusion in disordered media subject to an external field [1-7] or the so-
called molecular ‘pumps’ and ‘motors’ [8—10], responsible for transport of various chemicals
in biological cells. However, no universahd practical theoretical method of determining
V and D for arbitrary systems has been developed, and although many solutions for some
particular physical models have been proposed, in more complicated cases one often has to
resort to approximations or numerical methods.

The first attempt, to our knowledge, towards determiriingnd D in an arbitrary system
was made by Derrida [11], who considered a one-dimensional, periodic lattice of a period
L and arbitrary hopping rates between nearest-neighbour sites. He managed to give exact
expressions for the velocity and the diffusion constant as functions of the hopping rates. He
then extended his method [12] to a periodidimensional system, but his solution turns out
to be rather complicated. An alternative method of calculatingas also developed by Kehr
et al [5]. Of the two quantitiesV and D, the latter is, of course, much harder to find. A
surprisingly simple formula for one-dimensional systems with transition rates satisfying the
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detailed balance condition was derived by Lyo and Richards [13], and recently independently
reinvented by Kutner [14] and Wichmann [15],

o~ (5 )
2 e0p—
L2 PyT;
whereL is the period of the IatticeP_fq denote the equilibrium site occupancy probabilities,
andI';” are the transition rates from sifeto j + 1. However, this equation is valid only
when the random walker hops between nearest-neighbour sites. A method of deteiinining
in arbitrary periodic systems satisfying the detailed balance condition was then proposed by
Braun and Sholl [16]. Description of several other techniques, developed for some special
types of random environments, can be found in review articles [1-4, 17].

All the above-mentioned methods are based on the following scheme:

(1) Reduce the infinite system to a single elementary cell with periodic boundary conditions.

(2) Write down the master equation.

(3) Using it calculate the steady-state properties of this system; in particular, find the steady-
state site occupation probabilities [11, 12, 14—16] or propagators [18].

(4) Given these quantities, firld andD.

The third step is critical and can be carried out explicitly only for relatively small systems
or for models possessing some special properties, e.g. one-dimensional lattices with jumps
restricted to the nearest-neighbour sites. The main goal of this paper is to develop a simple
and, at the same time, general method of calculatirand D explicitly without performing
detailed analysis of the steady state. In our approach the third step reads as follows:

(3) Find the matrixA (k) representing the Fourier transform of the master equation;

which is a rather straightforward operation. The technique we propose is valid for both
equilibrium and non-equilibrium systems. It can also be quite easily implemented in computer-
algebra or numerical programming languages.

Following the first step, our considerations will be restricted to periodic systems, such as
crystals or molecular motors. A general problem of diffusion in an arbitrary disordered system
remains an open question. One might be tempted to treat it by taking thellimit oco.

This method can sometimes provide a hint about the anomalous type of diffusion in a given
aperiodic system [17]. However, except for some simple models [2, 19], it has not been
established whether the limits> oo andL — oo commute and, thus, whether this approach

is generally correct.

We will pay special attention to a one-dimensional system of finite pdriaith arbitrary
jump rates between any of its sites whose distance is lesd th@ihis is perhaps the simplest
model of a periodic system where all elements of the transition rate matrix can take on nonzero
values. Its investigation can be therefore carried out with relatively simple mathematical
formalism. A solution to a general, multi-particle and multi-dimensional problem requires
the same mathematical methods, but the notation would have to be complex. What is even
more important, any periodic system with a finite number of sites in its elementary cell can be
mapped on such a one-dimensional system; the geometry of the original problem is relevant
mainly in constructing the matrix (k) and can be taken into account quite easily. Once the
explicit form of A (k) has been found, one can comput@and D using the methods we derive
here for this simple one-dimensional system.

In our calculations we will use both continuous-time and discrete-time formalisms. One
could expect that since we calculdteand D in a stationary state, where all quantities are
independent of time, both approaches should yield the same result. However, as was found
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by Derrida [11], the form of the diffusion coefficient as a function of the transition rates can
depend on whether time flows continuously, or not. This is an important issue, since using
discrete-time models belongs to the favourite techniques of computer physics (in particular,
cellular-automata [20] and exact-enumeration [3] methods), and one needs to know whether
results obtained in this way are correct. Derrida [11] showed that in his (grossly simplified)
model the relation between the diffusion constants obtained in the continuousAnaad
discrete-time PP) formalisms read$ — D® = 1v2. We will show that this relation is
general and will prove it for any periodic system with arbitrary transition rates.

The paper is organized as follows. Using the Fourier transform of the master equation,
see [1,17, 21], in section 2 we analyse a one-dimensional system with arbitrary period
and transition ratef' ;. We find a simple technique of calculatingand D in terms of the
three lowest coefficients of the characteristic polynomial of the Fourier-transformed transfer
matrix, A (k). The most important properties of its spectrumkat 0 have been already
described in [21,22], but only for systems obeying the detailed balance condition. Therefore,
in sections 2.1 and 2.2 we analyse in detail the spectruk{fin a general case, assuming that
the time is a continuous or a discrete quantity, respectively. Then, in section 2.3, we compare
the two approaches and explain the different forms of diffusion coefficients derived in each of
them. In section 3 we generalize our approach to systems in arbitrary space dimension, and in
section 4 we present a particularly simple method of calculdtimgd D for one-dimensional
systems with transitions between the nearest-neighbour sites. In section 5 we derive explicit
forms of V. and D in some commonly used models. In particular, one of the examples studied
there explains how to apply our technique to many-body problems. Finally, section 6 is devoted
to conclusions.

2. General case of a periodic one-dimensional system

2.1. Continuous-time formalism

Consider a one-dimensional lattice with its sites located, at € /. Attime: = 0 we put

a particle at sitecg = 0. The particle can then jump between the lattice sites. Transitions are
assumed to represent a continuous (e.g. Poisson) Markov process in time. The (constant in
time) transition rate from a site, to a sitex,, will be denoted byl",,,,. We assume that the
system is periodic in space and denote its period. by 1,

Vn,m an = 1—1m+L,n+L Xm — Xn = Xm+L — Xp+L- (2)

Of course transition rates between two different sites cannot be nedatives 0 if m # n.
For simplicity we also restrict our considerations to the case where direct transitions between
sitesm andn are allowed only iflm —n| < L.

Let P(n, r) denote the probability density of finding the particle at sjteat timez. The
evolution of this quantity is governed by the master equation

0P (n,t) _

ot Z[anp(m, t) - anP(l/l, t)] (3)

m

and the initial condition reads
P(n,0) = 8,0 4)

We can now treat the whole lattice as if it consisted.&fublattices and define the probability
densitiesP, (j, t) of finding a particle at a given sublatti¢at siten at timer as

P(n,t) = P(n, )8 (5)

n,l
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where s, is a generalized Kronecker delt&}, = 1if n = [/ (modL) ands}, = 0
otherwise. We can now rewrite (3) as a systend. dihear dlfferentlal equations faP,(n, 1),
[=0,...,L—1,

aP(n,t)

» Z [Crp4jPrej(n+ j, 1) = Tpwj Pr(n, 1)]. (6)

j=1-L
The major advantage of (6) as compared with (3) is that its coefficients do not depand on
Therefore, we can calculate its Fourier transform as

APk, 1) L2 -
—r— = Z [Tr0e €0 =0 Proj (k. 1) = Trju Pr(k, 1] ™)

j=1-L
whereP(k, 1) = Y, exp(—ikx,) P(n, t).
The system of equations (7) can be written in a compact form using anl. matrix
Agj(k),

Pk, 1) ‘= -

— =2 AR Fik. 1) ®
j=0

where

Fljeik(x’ixl) + Fz,j+Lei.l{(x'f+L7X’) j <l

Aty = | D@7 4Tyt 9)

| =2 T j=1
m##l

We will impose only one restriction on the form of transition relfgs We will demand
that A (0) be irreducible (by a permutation of indices) [23, 24]; i.e., in the stationary state the
particle can be found at any of the sublattices defined in (5) with a probabilityPhysically,
this condition means that in the long-time limit the system does not split up into several
non-interacting subsystems. Mathematically, irreducibility meansAli@t has exactly one
eigenvector whose all components are strictly positive. Our approach is thus quite general—
we do not require that the transition rates should satisfy the detailed balance condition, the
Fourier-transformed transition rate matrix(k), need not be symmetric or even diagonalizable
atk = 0, and some of its eigenvalues can be complex.

A general solution to (8) reads [25]

L-1

Pik.t) =Y Tj;(k. 1) exp[r; (k)t] 1=0,...,L—1 (10)

Jj=0
where the coefficient$;; (k, r) are polynomials irr and can be determined using the initial
condition. The degree df;; (k, ¢) is smaller than the multiplicity of ; (k). We assume that
the eigenvalues ; (k) are ordered in accordance with the descending magnitude of their real
parts att = 0O; ie j <1= Re(*;(0) > Re(x(0)). SinceP(n,t) = Z L p(n, 1), there
is Pk, 1) = Z L p,(k, 1), and so (10) yields

L—
Pk, 1) =)k, 1) exph (k)] (11)
=0

whereh;(k,t) = ZL 1 T;;(k, t) are polynomials irr (actually’;(k, r) can depend on time
only if A;(k) is degenerated)
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In a one-dimensional system the stationary drift velo&itand the diffusion coefficient
D are given by
V = lim @
t—o00 f
3Pk
_ lim % k=0
t—00 t
2y 2
D= fim ¥ = %7
t—00 21‘

(12)

— im _%M:O*'(%M:O)z
t—00 2[

where(f(x)) = [ f(x)P(x,t)dx. Thus, if we could calculate the eigenvaluesiafk), we
would be able, in principle, to calculaieand D. The diagonalization oA\ (k), however, is a
formidable task feasible only in some special cases (e.g. for dhmalwhen special relations
have been imposed on its elements). Fortunately, as we will see below, if our aim is restricted
only to determiningV and D as functions of the transition rat&s;, we need not calculate
explicitly even a single eigenvalue of the transition rate matrix!

Let u be a constant such thau > |A;;(0)| and let@Q denote an auxiliary matrix,
Qi = Aj;(0)+udj. SinceA(0) isirreducible, so i€). Moreover, because all elements@f
are non-negative, we can apply to it the Frobenius theorem [23, 24] and concludg hlaat
a positive eigenvalug, which is a simple root of the characteristic equation, and the moduli
of all other eigenvalues are at mast Because the dominant eigenvalue of an irreducible,
non-negative matrix lies between the largest and smallest column sums [23, 24], and in our
case these sums are all equajtowe find that the dominant eigenvalge= u. Since the
spectrum ofQ is shifted, with respect to the spectrum a£0), by 1, we conclude that for
k = 0 the matrixA (k) has exactly one dominating eigenvalug0) = 0 and the real parts of
all other eigenvalues are negative,

20(0) = 0> Re(21(0)) = --- = Re(A.-1(0)). (14)

Thus, in the limitr — oo this single eigenvalue dominates the sum in the rhs of (10ra0.
In determining the forms of and D we can therefore employ a simple approximation

(13)

P(k,t) = ho(k, 1) expro(k)1]. (15)
Moreover, since_, P(n,t) = 1, there is
V0P (0,1) =1 (16)
which, owing to (14), implies
ho(0, 1) = 1. a7
Upon inserting (15) into (12), (13) and using (14), (17) we conclude that
V= i% k:O (18)
1%
= e o (29)
Let W(x) denote the characteristic polynomial of the mathig). Let c¢; (k) denote its
coefficients ak’/, j =0, ..., L. We thus have

L
ViW (ho() = Y c;j(k)[ro(k)]/ = 0. (20)
j=0

J
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On differentiating it with respect tb and using the first part of (14) we arrive at
oA
kil ] (21)
ok k=0 C1

where we used a shorthand notatign= c; (0) andc’; = dc;/dk|=o. Note thaic; 7 0, which

follows from (14). Differentiating (20) twice yields
%ro| gt 202(hp)? + 2t kg
K2 |y c1

whereiy = 9Ao(k)/dk|r—o andcg = 8%co/dk?|—o. We thus finally arrive at our major result

/

v=_i% (23)
c1

cg — 2c,V2 — 2iciV
26‘1 ’
Functionsc; (k) can depend ok and the transition rates in a very complicated way. We
were able to find only two general properties, both following immediately from (@#3: 0
andcy # 0. Explicit forms ofcy, cg, c1, ¢ ande; for some particular models will be given
below, in sections 4 and 5.

(22)

D =

(24)

2.2. Discrete-time formalism

The discrete-time formulation of the problem is basically similar to the continuous one, but
there are some major differences, too. For simplicity we will use the same notation as in the
previous section, but one should remember that almost all functions employed in the discrete-
time formulation of the problem differ from those we dealt with in section 2.1. Where it will be
necessary to compare quantities computed within each approach, we will attach a superscript
‘D’ to the quantity derived in the discrete-time formalism.

In the discrete-time version of the problem the master equation (expressed in terms of the
probabilitiesP; (n, t) of finding a particle at time at a sitex,, belonging to a sublatticg reads

L-1

Pi(n,t+1) = P(n.t)+ Y [TpgwjPujn+j.0) = TpjyP(n.0)]  (25)
j=1-L
wherel =0, ..., L —1, andl';; are dimensionless probabilities satisfying the usual condition

V;; 0 < I'j; < 1. Note that in the continuous formulation of the problEmwere unbounded
from above, dimensional quantities (of dimension{]) and we called them ‘transition rates’.
Last, but not least, in the present approach tiraesumes only integer values.
Upon taking the Fourier transform of (25) we arrive at
~ ~ L71 - ~ ~
Pk, t+1) =Pk, 1)+ Z [Fl,l+jelk(xl+j_xl)Pl+j(ka 1) — T Pk, )] (26)
j=1-L

which can be rewritten using a stochastic man@((k)
~ L71 ~
Pk, t+1) =Y " APk Pk, 1) (27)
j=0

where the only difference betweexP and its continuous-time counterpatt lies in their
diagonal elements

AD (k) = A (k) + 8. (28)
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Therefore, the eigenvalug$ of AP are related to the eigenvalugsof A through a simple
formula

AP (k) = A (k) +1 1=0,...,L -1 (29)

Applying the theorem of Frobenius [23,24]4d (0), which is a real, non-negative matrix,
we conclude that

A5(0) =1 (30)

and the moduli of all other eigenvalues do not exceed one. However, in contrast to the
continuous-time formalism, now there cansb2 1 eigenvalues, savj) k),m=0,...,s—1,

such thaﬂ/\?m (0)| = 1; for convenience we assume th%t = AB’. Although this can happen

only if all diagonal elements ok P (0) vanish [23, 24], we do not exclude this exceptional case
from our considerations [11]. The Frobenius theorem ensures us that all these dominating
eigenvalues are distinct, and so in the normal Jordan representatidh(bf the size of the
corresponding Jordan blocks is one. This suffices to assert thatfdd andr — oo

s—1
Pk.t) =Y hu([A5®)] (31)
m=0

whereh,, are some functions d.

Because equation (16) is valid both in continuous-time and discrete-time formalisms, upon
comparing it with (31) we conclude that except foik) all other coefficients,, (k) in (31)
must vanish at = 0,

ho(0) =1 hn,(0) =0 m=1...,5s—1 (32)

Actually, sincer is an integer, this is not a trivial statement; a proof is based on the fact that all
dominant eigenvalues) are distinct roots of the equatiaf = 1, see [23,24]. Upon inserting
(31) into (12) and (13) and then using (30) and (32) we arrive at

AR (k
vo _ % ®) (33)
ak k=0
1 [ 9220k AR (k) \?
pP =_Z 00 _ (oK) —Ww(0,1) (34)
2| ok2 ok 40
where
s—1 D D
oh,, [dr N
Wk,t)=Y —2 =z _ 20,0 ) by, 35
(k, 1) m;ak<3k o m)(m) (35)

Note that, by definitionWw (k,r) = 0if s =1, i.e., ika’(O) is the only dominating eigenvalue

of the transition matrixA (0). Moreover, because the existence of the diffusion constant is
guaranteed by the central limit theorewn(0, ) must be independent of time, at least in the
limit # — oo, for anys. This, in turn, requires that evensif> 1

v(0,1) =0 (36)

(see the comment under equation (32)). Therefore, to deterbhiaed D one needs only
to investigate the properties of a single eigenvaI@eO) atk ~ 0, i.e. equation (31) can be
replaced with

Pk, 1) = ho() D (0)]". (37)
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Finally, using (18), (19), (29), and (33)—(36) we conclude that the drift velocities and
diffusion coefficients obtained in continuous and discrete formulations of the problem are
related to each other by simple, general formulae

vo— vy (38)
D°=D-1iv2 (39)

Equation (39) holds, however, only if the interwvabetween successive jumps in the discrete
formulation of the problem equals one, which has been assumed in our calculations for
simplicity. For a general value afthe relation betwee® and DP reads

D° =D — 3rv? (40)

which has a correct dimensional form (all its terms have a dimengi6i {1]).

2.3. Comparison of the two formalisms

Comparing equations (15) and (37) we find that the main mathematical differences between the
continuous- and discrete-time formalisms are related to different functional fordgkof)

atk ~ 0. While in the continuous-time approach this function is given by an exponential, in
the discrete-time model we deal with a power function. In particular, noticedthétk) /ok>

yields a term proportional ta(t — 1) = ¢?> — ¢. This gives rise to an additional term linear in

t, which is responsible for the difference between (34) and (19), and hence for théﬁyﬁ”n

in (40).

The presence of the time unit in (40) suggests that the key to understanding the
physical reasons for the difference betwézand DP lies in the dimensional analysis. In the
continuous-time approach the transition ralfgs are dimensionalquantities that scale with
time as [TY]. Therefore, multiplying them all by some positive constang 1 corresponds
to changing the time unit, and so the resulting diffusion coefficignt, will be equal to the
product ofe and the original value of the diffusion coefficiemlyy. Similarly, Vaew = o Voig.

This explains why in the continuous-time approach we could safely assumé&. However,

in the discrete formalism there is no such a simple relation between the time inteawal

the jump probabilitied";;, which aredimensionless Suppose, for example, that at times

t =0, 1, 27,...wetoss acoin. Changing the frequency of tossing/or Will have no impact

on the probability of the coin falling heads up. The proper way of taking the continuous-time
limit in the discrete-time model is to assume that the jump probabillit%:are related to the
continuous-time transition rat&s; byasimpleformuli?, = tI'j; andtaking the limit — O.

In other words, to get the continuous-time limit, we need to apply the ‘alpha-transformation’ to
the transition probabilities with an infinitesimally small valuexofEquation (40) shows that

DP is actually a sum of two terms—one that scales linearly undewrttieansformation’ ),

and the other one which scales quadraticau)éfvz). In the limit r — 0 the continuous-
time diffusion coefficientD is thus of order @r), while —%TVZ is of order Qz?) and can

be neglected. Consequently, as could be expected, the relative difference between diffusion
coefficients calculated within each approach vanist@s;- D®)/D — 0 ast — 0.

A decrease of the diffusion coefficient in the discrete-time formalism can be also
interpreted as a consequence of the fact that a discrete process tends to be ‘less random’
than a continuous one. This is clearly seen in a limiting case of a one-dimensional lattice
(with lattice constant and time unitr) where all probabilities of jumping to the left vanish
(I';~ = 0) and all probabilities of jumping to the right are equal to oRg (= 1). A discrete
process with this choice of probabilities is completely deterministic. At each time interval the
diffusing particle with probability one hops to the right, hence the diffusion constant vanishes.
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On the other hand, if we consider a continuous-time processiwith= 0 andI'™ = 1, we
can see that the motion of the particle is now by no means deterministic. Although we know
that on average there will be one jump to the right per unit time, we do not know when it will
actually occur. This uncertainty introduces randomness to the process, and the corresponding
diffusion coefficient equals?/2z.

Note finally that because the left-hand side of (40) represents a diffusion coefficient, it
cannot be negative, and so

D> 1tV (41)

This has several interesting consequences. First, ifin a periodic system there is a stationary drift
(V # 0), then the continuous-time diffusion coefficignis bounded from below. That such a
bound exists can indirectly imply bounds on other physical quantities, e.g., the maximal force
exerted by a molecular motor [26]. Secosdpposéhat (40), and hence (41), is also valid
in infinite (aperiodic) random systems. Whenever the diffusion is sublinear, i.e., whenever
lim, o0 ((x2) — (x)2)/t = 0, there isD = 0. Equation (40) would then imply that = 0, or
lim,_ o {x)/t = 0. This would mean that whenever diffusion is sublinear (‘subdiffusion’), the
drift is also sublinear (‘subdrift’) or vanishes altogether. The asymmetric hopping model with
bond disorder can serve as an example of an infinite system where such relation is actually
observed [2].

3. Diffusion in arbitrary space dimensiond

Suppose we want to calculate the drift velodft)and the diffusion tensab in a system with
d Euclidean coordinates. If the system can be divided iritoite number of subsystems with
constant transition rates between each two of them, our major results (14)—(17) and (37) remain
valid irrespective of the geometry of the system. Such division is always possible for periodic
systems with a finite number of sites in the elementary cell. The matky is the most
‘sensitive’ to the geometry of the system under consideration. In calculating its explicit form
one can use an equation similar to (9), remembering, howevel Hradx, are now vectors
in ad-dimensional space. One should also take into account all possible transitions between
sublattices, and this can be done by considering all possible jumps starting at any site belonging
to some elementary cell and ending in the same cell or in one of its nearest-neighbour cells.
The components of the velocity vectdrand the diffusion tensab are given by

. 1Pkt
V, = lim ) _ lim i= k. 1) (42)
t—oo t t—o0 m =0
. 5) — . 1 92Pk,t) 9Pk, t)aP(k,t
D,y = lim (XpXo) (XH)OC):“m_ _ ( )+ (k,t) AP (k, 1) . @3)
=00 2t t—>o00 2t ok, 0k, ok, ok, ieo
Using (14)—(17) and (37) we conclude that
_0Ao
v, =VP=i— 44
8 g Oku li=o 49
1 9%
Dy =—=—"2 (45)
29k, 0k, |7_g
D _ _} ﬁ _ %% (46)
e 2 | 0k, dky Ok, ks | 7o
whereu,o = 1,...,d. Actually, since Iogﬁ(lz, 1) ~ Ao(l?)t is a generating function for

cumulants ofP (x, t) [22], the first two of the above formulae are a natural consequence of
(15) and (17).
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Just as in the one-dimensional case, any componeﬁtcme can be expressed in terms
of derivatives of the three lowest coefficients of the characteristic polynomial of the matrix
A(k) atk = 0. In particular,

5 _c(()u)
V//. = ‘///, =—1— (47)
€1 li=0
(W)(o) o) (o)
D,, = cg " = 2cV, Ve —i(c]" Vs + ¢ V) (48)
2C1 =0
D), =Dy — 3VuVs (49)

where we used a shorthand notatiptt’ = 3f/dk,.

4. The nearest-neighbour transition rates

If in a one-dimensional system only transitions to the nearest-neighbours are allowed, and if
the distance between nearest-neighbour sites is equal to one, our formulae (23) and (24) can
be simplified by noting that in this particular case

L-1 L-1
cgziL<1‘[r7_1‘[r;> (50)
j=0 j=0
L-1 L-1
c8=L2<HF7+HF;_) (51)
j=0 j=0
;=0 (52)
where ry” and I are the transition rates to the right and left from siterespectively;
[ =T, andl’;” = T'j_1 ;. Thus, to determing and D we only need to compute the
two terms of the characteristic polynomial &4{0): ¢; andcs.
Although¢; andc; could be, at least in principle, found by calculating@ét— A (0)),
I being the identity matrix, this could lead to serious computational overhead evéncfior
order ten. A more efficient method exploits the fact thadre polynomials i";~ andI";”,
j=0,...,L—1, and can be expressed as
L-1
a= Y ] @)@ vy 8 (53)
{7j},18;) m,n=0
wherel € {1, 2}, v € {0, 1}, 6, € {0, 1}, andy;; ({y;}, {8,}) = Oifatleast one of the following
conditions is satisfied:

L-1
> G +8m) AL -1

m=0 54
EIm Ym = 5m =1 ( )

A Vm =01 =1
Otherwisey ({y;}, {6;}) = 1. For example, foL = 3 there is
1=, g+, Ty +0, g+ Iy +0; T+ Ty

0T+ T+ T (55)
=Ty +0 +0, +0g +I +5.
Although formally the sum in (53) consists of’2terms, in practice only for a few of them
do ¥ ({y;}.{6;}) # 0. In particular, for a given value df the sum in (53) consists af?
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non-vanishing terms for; and (L* — L?)/12 terms forc,. Thus it should be possible to
calculateD algebraically forL of order of 20, and numerically fat of order at least 100. It

is worth noting that since; can be computed as sums of positive values, by using (53) rather
than calculating the determinantof — A (0) we can avoid large numerical errors which often
appear when computing determinants of large matrices.

It is not difficult to show that our general formulae (23) and (24) are consistent with
equation (1) derived for a general case of one-dimensional systems at equilibrium with nearest-
neighbour transitions. To this end it suffices to notice that the equilibrium site occupation
probabilitiestq can be expressed in terms of the jump probabilities as

B R BRI I = SALLY 2 (56)
edr~— ~ p— - 1= - 1= —
Py Iy Ty L A N

On inserting it into (1) and then taking into account (53) and the trivial conditica 0 one
arrives at (24).

Another interesting consequence of (50)—(52) is that diffusion in systems with transitions
to nearest neighbours is always normal. To see it note thatsinge, D is always finite and
thus no superdiffusion is possible. The other type of anomaly, subdiffusion, would require that
D = 0. Owing to (41) this would imply/ = 0 which, upon taking into account (24), would
requirecy = 0. However, the explicit form ofj, see (51), guarantees thgt > O except
for a degenerated case where the diffusing particle is confined to a finite region of the lattice
(I';” =TI'7” = 0 for somej and).

One final remark. Some authors [5, 10, 14], when considering a one-dimensional system
with nearest-neighbour transitions, prefer to reduce the problem to diffusion on a finite ring
and investigate the probability currehtather than the drift velocity . The former is defined
asJ = P;I'; — P;I'7,; and in the steady state does not depend on th¢ site measured
at. For single-particle systemsandV are related to each other through a simple formula
J = V/L [11]. In this case our approach can thus be applied for calculatingWbatid J .

5. Applications

5.1. Thecasé& = landL =2

Applying our approach to a particle diffusing in a one-dimensional system with a lattice
constant: = 1, time unitr = 1, and the period. = 1 we immediately arrive at a well known
result:

V=>r>"-I" (57)
D=T"+I")/2 (58)
DP =~ +Ir“— T~ =T9?3/2. (59)
For L = 2 we find
Iy — s
vV = 2 1 2 S 1 2 (60)
>0y +0Trs V2
D=2-1"2 1°2 (61)
S S
P, +05Trs 2+SVv?2
DD -2 12 1°2 o (62)
S s 2

whereS = T'7” +T'5” +I';- + ;. Note also that the solution fdr = 3 can be easily derived
using (55).
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5.2. The sawtooth potential of arbitrary period in an external field

Consider a one-dimensional system of perlodith site energies, ;+; = je, wheren is an

integer,j = 0,...,L — 1, ande > 0 is a constant. Such a pattern is known as a discrete
sawtooth potential [5, 9]. We assume that the transition rate from g &it¢ + 1 is given by
I =bexp(—pBe/2) (63)
and the rate of jumping fronito j — 1 reads
re_ b~texp(Be/2) j#0 (modL) 64)
I T b texp(Be(1/2 — L)) j=0 (modL)

whereg = 1/kgT is the Boltzmann factor anbl = exp(8F/2) represents a bias due to an
external force”. Note that with this choice of the transition rates,#ot 1 the system satisfies
the detailed balance conditidr}tl exp(—BE;+1) =T exp(—BE)).

Using (53) and some combinatorics one can prove that fer2

co =ILR*(b* —b7F) (65a)
cg=L?RE +b71) (65b)
c1=GL718,(G) + REGELS, _1(G™Y (65c)
;=0 (65d)
c2=G*"2,_5(G)+R*G" "2, 3G (65€)

where R = exp(—Be/2) controls the anisotropy of the potential; = Rb, S,(x) =
Yy jx% =[x (L +m — mx?) — x?)/(x2 — D2, andZ, (x) = 3 Y gm + 1— j)(j +
1)(j + 2)x%. Actually, we were able to prove only (86-(65d), and (6%) is a conjecture
based on the form af, derived forL = 2, ..., 20.

The stationary drift velocity’ and the diffusion constan3 andDP can be now calculated
using (23), (24), and (40). The resulting velocity has already been studied in [5]. The diffusion
coefficientD calculated for various values & and L as a function of the bias is depicted
in figure 1. ForR = 1 there iss = 0, and so for any we havel';” = b andI";” = b1,
Consequently, the effective period equals one. Using (58) we conclud@thag b+b71.

For R < 1 the behaviour ofd becomes more complicated. For a large bias to the right,

b > 1, the jumps to the left are so rare that practically they become irrelevant. We thus have
7 =bR,T'; ~0,and saD ~ bR/2 irrespective ofL. For a strong bias to the left, < 1,

the jumps to the right can be neglected, but the particle has to jump over a large potential
barrier located at sites= ..., —L, 0, L, ... whose height is proportional to — % see (64).
Therefore, in this regim® is a quickly decreasing function éf. These two limiting solutions
match in the intermediate regime, which can be roughly describedas £ 1/R.

5.3. Two particles in a sawtooth potential on a ring of length- 4

Considettwo particles diffusing in a sawtooth potential on a ring of lenfth- 4. We assume
that any sitej can be occupied by only one of them (the hard-core interaction). For simplicity
we also assume that the distance between the particles cannot éxeegdso that we can
reduce the system to a ring consistingl.o$ites.

Each state of the system can be described as a pair of intégens), wheren, m =
0,...,L — 1 denote the currently occupied sites. #As# m, there areL(L — 1)/2 = 6
different states. Our two-particle system is thus equivalent to a six-state system with one
‘virtual’ random walker. These states are, in ordér,1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3).

The distance between a stdig, j1) and (i, j») equalsi, — iy + j» — j1. For example, the
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Figure 1. Diffusion coefficientD of a single particle in a sawtooth potential (63) and (64) for
various potential periodé and anisotropy parametefs as a function of the bias. Arbitrary
units.

distance from(0, 1) to (0, 2) is one. The transition rate betwe@n, j1) and(i,, j») vanishes
unlesdi, —iz] +|j2 — j1| = 1, and in this case a transition frai, j;) to (i, j») corresponds
to a single jump of one of two diffusing particles. For example, the transition rate®@pi
to (0,2) isT';”, and from(0, 1) to (0, 3) is zero. Consequently, if the lattice constant 1,
the matrixA (k) takes on the following form:

-ry -rg ry ek 0 0 ry e ik 0
— o—ik ~ — <~ ik —dk — o—ik
rye -r; -1, ﬂ“oﬁfro rye rie 0‘ ry’e
Alk) = 0 ry e ik -5 -1 0 riédk 0 (66)
- 0 ry e ik 0 ry-ry ry ek 0 .
< ik —> ik — ok — e _r< _r— <~ dk
rge 0‘A rye ry’e -r3 =Ty -T§ -Tg r;e
gk — ok — <«
0 rge 0 0 rye -r3” -T3

The drift velocity V and the diffusion coefficienb can be found for arbitrary transition
rates, butthe results averylengthy. However, in a particular case of the sawtooth potential the
transition rate$';” andI";~ are given by relatively simple formulae (63) and (64), respectively.
Then,
cp=8IG8(G® — R (R®+2G? + 1)(G* + 1)
cg =32G78(G®+ R®)(R®+2G? + 1)(G% + 1)
c1 = G2(G?+1[12G® + 15G° + 10G* + 5G? + 2 + R8(9G® + 13G* + 17G? + 5)

+R(G* + 2G? + 5)] (67)
¢) = 8iG3(G® — R®)(R®+4G? +3)
c» = GY37G® + 69G°® + 58G* + 31G? + 9 + R®(23G°® + 49G* + 53G2 + 19)

+R8(3G* +8G? + 9)]
whereG and R were defined below equation (65).

Just like in the previous exampl€, D, andDP can be now determined using (23), (24),
and (40). The properties of the velociywill be studied in detail elsewhere (see [27]). Here,
in figure 2 we present the ratio of the diffusion coefficient calculated for a two-particle system
(D) to that calculated for a single-particle systefn ), for L = 4, as a function of the bids
This ratio measures the change of diffusivity due to interactions with the second particle. As
could be expected), < Dy, i.e.the presence of the second particle decreases the diffusivity of
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Figure 2. The ratio of the diffusion coefficient®, andD; calculated for a four-site ring containing
two and one particles, respectively, as a function of the hiéasr various values of the anisotropy
parameteR. Arbitrary units.

the first one. This effect is not strong, however, for we find hat> %Dl. As in the previous
example, for large bials, the ratioD,/ D1 becomes independent of the potential anisotr®py

6. Conclusions

We have developed an effective technique of calculating the drift velﬁ?ciatyld the diffusion
tensorD in arbitrary periodic systems. A novel feature of our approach, as compared with
previously proposed methods [11-16], consists in the fact that we need not examine in detail
the steady-state properties of the system. In particular, we do not need to solve linear equations
of relatively high order to find the stationary probability distribution of the random walker over
different sublattices. Instead, we calculdandD directly. The only quantity we really need

in order to carry out our calculations is the matrixk). Its explicit form, however, can be
found almost trivially; all one needs to know are the transition rates and distances from any site
of an elementary cell to any other site in the same or adjacent cell. Once the farth)dias

been determined, one should calculate the three lowest terms of its characteristic polynomial.
ThenV andD can be determined using our formulae (47) and (48), respectively.

Our approach is very general and can be applied practically to any periodic system
in an arbitrary space dimension. It is particularly well suited for calculations employing
computer-algebra systems, e.g., Maple or Reduce, or for numerical analysis. In this context
one should also note that the coefficiegt®f the characteristic polynomial af (0) can be
alwaysexpressed as polynomials in;; (0), j # I, with positivecoefficients, and thus can be
calculated numerically with extremely high accuracy. While this is not necessarily true in the
case of their derivatives, we believe that our approach enables one to calcuateD even
for systems where the corresponding steady-state problem is numerically ill-conditioned.

We were able to prove a general relation between the diffusion constants calculated using
continuous-time and discrete-time approaches. Our analysis showsdhgpieriodic system
(including, for example, lattice gases studied in [6, 7]) they differ by a t%trﬁ, whereV
denotes the steady-state drift velocity along a given direction. Since the timitsoo and
L — oo were shown to commute, at least in some simple models [2, 19], we expect that this
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relation holds also for infinite random systems. It would be interesting to know whether such
a simple and apparently universal relation can be applied in contexts other than those studied
here.

We also showed how our technique can be applied to a simple many-body problem.
While, owing to mathematical complexity, we do not expect that in this way one will be able
to calculate explicitly transport coefficients in non-equilibrium systems containing more than
a few particles, our conclusion about the universal difference between diffusion coefficients
calculated in continuous- and discrete-time models should still hold. This conjecture is based
on the fact that diffusion of several particles can be interpreted as diffusion of a single particle
in the corresponding multidimensional phase space, and for the latter problem the relation
betweenD and DP has been established rigorously in section 3. Thus, for the future work,
two problems are of primary importance: the role of periodic boundary conditions in the limit
of asymptotically infinite period. — oo, and detailed analysis of possible applications of
our method to many-body systems.
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